Contribution of the extracellular matrix to the viscoelastic behavior of the urinary bladder wall.
نویسندگان
چکیده
We previously reported that when the stress relaxation response of urinary bladder wall (UBW) tissue was analyzed using a single continuous reduced relaxation function (RRF), we observed non-uniformly distributed, time-dependent residuals (Ann Biomed Eng 32(10):1409-1419, 2004). We concluded that the single relaxation spectrum was inadequate and that a new viscoelastic model for bladder wall was necessary. In the present study, we report a new approach composed of independent RRFs for smooth muscle and the extracellular matrix components (ECM), connected through a stress-dependent recruitment function. In order to determine the RRF for the ECM component, biaxial stress relaxation experiments were first performed on decellularized extracellular matrix network of the bladder obtained from normal and spinal cord injured rats. While it was assumed that smooth muscle followed a single spectrum RRF, modeling the UBW ECM required a dual-Gaussian spectrum. Experimental results revealed that the ECM stress relaxation response was insensitive to the initial stress level. Thus, the average ECM RRF parameters were determined by fitting the average stress relaxation data. The resulting stress relaxation behavior of whole bladder tissue was modeled by combining the ECM RRF with the RRF for the smooth muscle component using an exponential recruitment function representing the recruitment of collagen fibers at higher stress levels. In summary, the present study demonstrated, for the first time, that stress relaxation response of bladder tissue can be better modeled when divided into the contributions of the extracellular matrix and smooth muscle components. This modeling approach is suitable for prediction of mechanical behaviors of the urinary bladder and other organs that exhibit rapid tissue remodeling (i.e., smooth muscle hypertrophy and altered ECM synthesis) under various pathological conditions.
منابع مشابه
The Sheep’s Urinary Bladder Matrix as a Potent Biological Materials Resource -an Ultrastructural Study
Background and Objectives: Biological scaffold resources composed of extracellular matrix (ECM) have been shown to make easy the practical remodeling of various tissues in both animal and human studies. The goal of current study was to make sheet form of ECM from sheep’s urinary bladder. Methods: ECM was extracted from Sheep’s urinary bladder according to standard method. Scanning electron ...
متن کاملViscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach
A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between ...
متن کاملViscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach
A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between ...
متن کاملCalculation of tunnel behavior in viscoelastic rock mass
Wall displacements and ground pressure acting on the lining of a tunnel increase with time. These time-dependent deformations are both due to face advance effect and to the time-dependent behavior of the rock mass. Viscoelastic materials exhibit both viscous and elastic behaviors. Thorough this study, the effect of different linear viscoelastic models including Maxwell, Kelvin and Kelvin-Voigt...
متن کاملارزیابی قابلیت پیشگویی هماچوری حین عمل جراحی اسلینگ ساب اورترال برای پارگی دیواره مثانه در زنان با بیاختیاری ادراری
Background & Aim: Bladder wall perforation is one of important complications in suburethral sling procedures. The aim of the present study is to assess predictive value of intraoperative hematuria for bladder rupture caused by passing tunnlers during suburethral sling.Patients and Method: 250 females with stress urinary incontinence were enrolled in this cross-sectional study from October...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomechanics and modeling in mechanobiology
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2008